frudawski

speceval

The speceval function evaluates spectral power distribution(s) for several parameters.

Note: The function also evaluates the α-opic daylight equivalents, e.g. the Melanopic Equivalent Daylight Illuminance (MEDI). Since the spectral power distribution can also represent other photometric units, as e.g. the luminance, the return values are named with Y instead of I for illuminance – as Y represents the photometric unit in question – hence MEDI is given as MEDY.

Usage:

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
data = speceval(lam,spec)
data = speceval(lam,spec)
data = speceval(lam,spec)

Where:

ParameterDescription
dataIs a return struct containing all relevant information:
X: containing the non-normalized X Tristimulus values
Y: containing the non-normalized Y Tristimulus values, representing the photometric unit in question
Z: containing the non-normalized Z Tristimulus values
SC: retinal ganglion cells: s-cone-opic sscs_{\text{sc}} or cyanopic
MC: retinal ganglion cells: m-cone-opic smcs_{\text{mc}} or chloropic
LC: retinal ganglion cells: l-cone-opic slcs_{\text{lc}} or erythropic
RH: retinal ganglion cells: rhodopic srhs_{\text{rh}}, or scotopic NOTE: Km=1 lmWK_{\text{m}}=1~\frac{\text{lm}}{\text{W}} according to CIE S 026
MEL: retinal ganglion cells: melanopic smels_{\text{mel}}
sc_EDY: s-cone-opic equivalent daylight Y
mc_EDY: m-cone-opic equivalent daylight Y
lc_EDY: l-cone-opic equivalent daylight Y
rh_EDY: rhodopic equivalent daylight Y
MEDY: melanopic equivalent daylight Y
Tcp: correlated colour temperature (CCT) in K
x: normalized Tristimulus value x for 2 degree standard observer
y: normalized Tristimulus value y for 2 degree standard observer
z: normalized Tristimulus value z for 2 degree standard observer
x10: normalized Tristimulus value x for 10 degree standard observer
y10: normalized Tristimulus value y for 10 degree standard observer
z10: normalized Tristimulus value z for 10 degree standard observer
u: chromaticity coordinate u in CIE 1960
v: chromaticity coordinate v in CIE 1960
v_: chromaticity coordinate v’ in CIE 1976
L: CIE LL^* chromaticity coordinate in LabL^*a^*b^*
a: CIE aa^* chromaticity coordinate in LabL^*a^*b^*
b: CIE bb^* chromaticity coordinate in LabL^*a^*b^*
C: CIE CC^* chromaticity coordinate in LCh°L^*C^*h^°
h: CIE h°h\degree chromaticity coordinate in LCh°L^*C^*h\degree
Ra: general Colour Rendering Index
Rf: general Colour Fidelity Index
duv: contains the delta uv distance to a planck illuminant of the same CCT

lam
Defines the wavelengths of the given spectrum/spectra.
specProvides the input spectrum/spectra, row-wise.

Examples

Evaluate the spectral power distribution of standard illuminant ‘FL4’:

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
lam = 380:780;
spec = ciespec(lam,'FL4');
speceval(lam,spec)
lam = 380:780; spec = ciespec(lam,'FL4'); speceval(lam,spec)
lam = 380:780;
spec = ciespec(lam,'FL4');
speceval(lam,spec)

See also: ciespec

Result:

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
ans =
scalar structure containing the fields:
X = 1.0911e+06
Y = 9.9966e+05
Z = 3.8800e+05
SC = 296.82
MC = 1133.4
LC = 1635.8
RH = 597.45
MEL = 418.30
sc_EDY = 3.6318e+05
mc_EDY = 7.7850e+05
lc_EDY = 1.0042e+06
rh_EDY = 4.1212e+05
MEDY = 3.1541e+05
Tcp = 2939.5
x = 0.4402
y = 0.4033
z = 0.1565
x10 = 0.4492
y10 = 0.3907
z10 = 0.1601
u = 0.2530
v = 0.3477
v_ = 0.5216
L = 69.703
a = 17.433
b = 42.993
C = 46.393
h = 67.928
Ra = 51.375
Rf = 56.838
duv = -7.4044e-04
ans = scalar structure containing the fields: X = 1.0911e+06 Y = 9.9966e+05 Z = 3.8800e+05 SC = 296.82 MC = 1133.4 LC = 1635.8 RH = 597.45 MEL = 418.30 sc_EDY = 3.6318e+05 mc_EDY = 7.7850e+05 lc_EDY = 1.0042e+06 rh_EDY = 4.1212e+05 MEDY = 3.1541e+05 Tcp = 2939.5 x = 0.4402 y = 0.4033 z = 0.1565 x10 = 0.4492 y10 = 0.3907 z10 = 0.1601 u = 0.2530 v = 0.3477 v_ = 0.5216 L = 69.703 a = 17.433 b = 42.993 C = 46.393 h = 67.928 Ra = 51.375 Rf = 56.838 duv = -7.4044e-04
ans =

  scalar structure containing the fields:

    X = 1.0911e+06
    Y = 9.9966e+05
    Z = 3.8800e+05
    SC = 296.82
    MC = 1133.4
    LC = 1635.8
    RH = 597.45
    MEL = 418.30
    sc_EDY = 3.6318e+05
    mc_EDY = 7.7850e+05
    lc_EDY = 1.0042e+06
    rh_EDY = 4.1212e+05
    MEDY = 3.1541e+05
    Tcp = 2939.5
    x = 0.4402
    y = 0.4033
    z = 0.1565
    x10 = 0.4492
    y10 = 0.3907
    z10 = 0.1601
    u = 0.2530
    v = 0.3477
    v_ = 0.5216
    L = 69.703
    a = 17.433
    b = 42.993
    C = 46.393
    h = 67.928
    Ra = 51.375
    Rf = 56.838
    duv = -7.4044e-04

Evaluate several spectral power distributions with resulting |Y| = 1000:

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
lam = 380:780;
spec = ciespec(lam,{'FL2','A','D65'},1000);
data = speceval(lam,spec)
lam = 380:780; spec = ciespec(lam,{'FL2','A','D65'},1000); data = speceval(lam,spec)
lam = 380:780;
spec = ciespec(lam,{'FL2','A','D65'},1000);
data = speceval(lam,spec)

See also: ciespec

Result:

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
data =
scalar structure containing the fields:
X =
991.46 1098.41 950.42
Y =
1000 1000 1000
Z =
673.15 355.87 1088.61
SC =
0.5083 0.2542 0.8173
MC =
1.2814 1.1743 1.4558
LC =
1.6160 1.6567 1.6289
RH =
0.9250 0.8308 1.4497
MEL =
0.7558 0.6575 1.3262
sc_EDY =
621.92 311.01 1000.00
mc_EDY =
880.17 806.60 1000.00
lc_EDY =
992.05 1017.06 1000.00
rh_EDY =
638.04 573.09 1000.00
MEDY =
569.90 495.81 1000.00
Tcp =
4225.1 2856.0 6501.8
x =
0.3721 0.4475 0.3127
y =
0.3753 0.4075 0.3291
z =
0.2526 0.1450 0.3582
x10 =
0.3793 0.4511 0.3138
y10 =
0.3673 0.4059 0.3310
z10 =
0.2534 0.1429 0.3552
u =
0.2202 0.2560 0.1978
v =
0.3331 0.3495 0.3122
v_ =
0.4997 0.5243 0.4684
L =
67.672 69.997 64.084
a =
5.1118e+00 1.8313e+01 -5.7970e-03
b =
2.1367e+01 4.6138e+01 9.2311e-03
C =
2.1970e+01 4.9639e+01 1.0900e-02
h =
76.545 68.351 122.128
Ra =
64.250 100.000 100.000
Rf =
70.208 99.996 99.997
duv =
1.8626e-03 7.1936e-06 3.2145e-03
data = scalar structure containing the fields: X = 991.46 1098.41 950.42 Y = 1000 1000 1000 Z = 673.15 355.87 1088.61 SC = 0.5083 0.2542 0.8173 MC = 1.2814 1.1743 1.4558 LC = 1.6160 1.6567 1.6289 RH = 0.9250 0.8308 1.4497 MEL = 0.7558 0.6575 1.3262 sc_EDY = 621.92 311.01 1000.00 mc_EDY = 880.17 806.60 1000.00 lc_EDY = 992.05 1017.06 1000.00 rh_EDY = 638.04 573.09 1000.00 MEDY = 569.90 495.81 1000.00 Tcp = 4225.1 2856.0 6501.8 x = 0.3721 0.4475 0.3127 y = 0.3753 0.4075 0.3291 z = 0.2526 0.1450 0.3582 x10 = 0.3793 0.4511 0.3138 y10 = 0.3673 0.4059 0.3310 z10 = 0.2534 0.1429 0.3552 u = 0.2202 0.2560 0.1978 v = 0.3331 0.3495 0.3122 v_ = 0.4997 0.5243 0.4684 L = 67.672 69.997 64.084 a = 5.1118e+00 1.8313e+01 -5.7970e-03 b = 2.1367e+01 4.6138e+01 9.2311e-03 C = 2.1970e+01 4.9639e+01 1.0900e-02 h = 76.545 68.351 122.128 Ra = 64.250 100.000 100.000 Rf = 70.208 99.996 99.997 duv = 1.8626e-03 7.1936e-06 3.2145e-03
data =

  scalar structure containing the fields:

    X =

        991.46   1098.41    950.42

    Y =

       1000   1000   1000

    Z =

        673.15    355.87   1088.61

    SC =

       0.5083   0.2542   0.8173

    MC =

       1.2814   1.1743   1.4558

    LC =

       1.6160   1.6567   1.6289

    RH =

       0.9250   0.8308   1.4497

    MEL =

       0.7558   0.6575   1.3262

    sc_EDY =

        621.92    311.01   1000.00

    mc_EDY =

        880.17    806.60   1000.00

    lc_EDY =

        992.05   1017.06   1000.00

    rh_EDY =

        638.04    573.09   1000.00

    MEDY =

        569.90    495.81   1000.00

    Tcp =

       4225.1   2856.0   6501.8

    x =

       0.3721   0.4475   0.3127

    y =

       0.3753   0.4075   0.3291

    z =

       0.2526   0.1450   0.3582

    x10 =

       0.3793   0.4511   0.3138

    y10 =

       0.3673   0.4059   0.3310

    z10 =

       0.2534   0.1429   0.3552

    u =

       0.2202   0.2560   0.1978

    v =

       0.3331   0.3495   0.3122

    v_ =

       0.4997   0.5243   0.4684

    L =

       67.672   69.997   64.084

    a =

       5.1118e+00   1.8313e+01  -5.7970e-03

    b =

       2.1367e+01   4.6138e+01   9.2311e-03

    C =

       2.1970e+01   4.9639e+01   1.0900e-02

    h =

        76.545    68.351   122.128

    Ra =

        64.250   100.000   100.000

    Rf =

       70.208   99.996   99.997

    duv =

       1.8626e-03   7.1936e-06   3.2145e-03

References

ISO/CIE 11664-1:2019(E): Colorimetry - Part 1: CIE standard colorimetric observers. Commission International de l’Éclairage (CIE), Vienna Austria, 2019.

CIE S 026/E:2018: CIE System for Metrology of Optical Radiation for ipRGC-Influenced Responses to Light. Commission International de l’Éclairage (CIE), Vienna Austria, 2018, (DOI: 10.25039/S026.2018).

CIE 15:2018: Colorimetry, 4th Edition. Commission International de l’Éclairage (CIE), Vienna Austria, 2018, ISBN: 978-3-902842-13-8 , (DOI: 10.25039/TR.015.2018).

David Lewis MacAdam: Projective Transformations of I. C. I. Color Specifications. In: Journal of the Optical Society of America, vol. 27, no. 8, pp. 294-299, 1937, (DOI: 10.1364/JOSA.27.000294).

CIE 13.3:1995: Method of measuring and specifying colour rendering properties of light sources. Commission Internationale de l'Éclairage (CIE), Vienna Austria, 1995, ISBN: 978 3 900734 57 2.

CIE 224:2017: CIE 2017 Colour Fidelity Index for accurate scientific use. Commission International de l’Éclairage (CIE), Vienna Austria, 2017, ISBN: 978-3-902842-61-9.

Leave a comment

* I accept the use of cookies as well as the terms in the privacy policy. I accept that data provided by me is processed and saved. I know and accept that comments may be saved and published after review.