The speceval function evaluates spectral power distribution(s) for several parameters.
Note: The function also evaluates the α-opic daylight equivalents, e.g. the Melanopic Equivalent Daylight Illuminance (MEDI). Since the spectral power distribution can also represent other photometric units, as e.g. the luminance, the return values are named with Y instead of I for illuminance – as Y represents the photometric unit in question – hence MEDI is given as MEDY.
Usage:
data = speceval(lam,spec)
data = speceval(lam,spec)
data = speceval(lam,spec)
Where:
Parameter | Description |
data | Is a return struct containing all relevant information: – X : containing the non-normalized X Tristimulus values– Y : containing the non-normalized Y Tristimulus values, representing the photometric unit in question– Z : containing the non-normalized Z Tristimulus values– SC : retinal ganglion cells: s-cone-opic or cyanopic– MC : retinal ganglion cells: m-cone-opic or chloropic– LC : retinal ganglion cells: l-cone-opic or erythropic– RH : retinal ganglion cells: rhodopic , or scotopic NOTE: according to CIE S 026– MEL : retinal ganglion cells: melanopic – sc_EDY : s-cone-opic equivalent daylight Y– mc_EDY : m-cone-opic equivalent daylight Y– lc_EDY : l-cone-opic equivalent daylight Y– rh_EDY : rhodopic equivalent daylight Y– MEDY : melanopic equivalent daylight Y– Tcp : correlated colour temperature (CCT) in K– x : normalized Tristimulus value x for 2 degree standard observer– y : normalized Tristimulus value y for 2 degree standard observer– z : normalized Tristimulus value z for 2 degree standard observer– x10 : normalized Tristimulus value x for 10 degree standard observer– y10 : normalized Tristimulus value y for 10 degree standard observer– z10 : normalized Tristimulus value z for 10 degree standard observer– u : chromaticity coordinate u in CIE 1960– v : chromaticity coordinate v in CIE 1960– v_ : chromaticity coordinate v’ in CIE 1976– L : CIE chromaticity coordinate in – a : CIE chromaticity coordinate in – b : CIE chromaticity coordinate in – C : CIE chromaticity coordinate in – h : CIE chromaticity coordinate in – Ra : general Colour Rendering Index– Rf : general Colour Fidelity Index– duv : contains the delta uv distance to a planck illuminant of the same CCT |
lam | Defines the wavelengths of the given spectrum/spectra. |
spec | Provides the input spectrum/spectra, row-wise. |
Examples
Evaluate the spectral power distribution of standard illuminant ‘FL4’:
lam = 380:780;
spec = ciespec(lam,'FL4');
speceval(lam,spec)
lam = 380:780;
spec = ciespec(lam,'FL4');
speceval(lam,spec)
lam = 380:780; spec = ciespec(lam,'FL4'); speceval(lam,spec)
See also: ciespec
Result:
ans =
scalar structure containing the fields:
X = 1.0911e+06
Y = 9.9966e+05
Z = 3.8800e+05
SC = 296.82
MC = 1133.4
LC = 1635.8
RH = 597.45
MEL = 418.30
sc_EDY = 3.6318e+05
mc_EDY = 7.7850e+05
lc_EDY = 1.0042e+06
rh_EDY = 4.1212e+05
MEDY = 3.1541e+05
Tcp = 2939.5
x = 0.4402
y = 0.4033
z = 0.1565
x10 = 0.4492
y10 = 0.3907
z10 = 0.1601
u = 0.2530
v = 0.3477
v_ = 0.5216
L = 69.703
a = 17.433
b = 42.993
C = 46.393
h = 67.928
Ra = 51.375
Rf = 56.838
duv = -7.4044e-04
ans =
scalar structure containing the fields:
X = 1.0911e+06
Y = 9.9966e+05
Z = 3.8800e+05
SC = 296.82
MC = 1133.4
LC = 1635.8
RH = 597.45
MEL = 418.30
sc_EDY = 3.6318e+05
mc_EDY = 7.7850e+05
lc_EDY = 1.0042e+06
rh_EDY = 4.1212e+05
MEDY = 3.1541e+05
Tcp = 2939.5
x = 0.4402
y = 0.4033
z = 0.1565
x10 = 0.4492
y10 = 0.3907
z10 = 0.1601
u = 0.2530
v = 0.3477
v_ = 0.5216
L = 69.703
a = 17.433
b = 42.993
C = 46.393
h = 67.928
Ra = 51.375
Rf = 56.838
duv = -7.4044e-04
ans = scalar structure containing the fields: X = 1.0911e+06 Y = 9.9966e+05 Z = 3.8800e+05 SC = 296.82 MC = 1133.4 LC = 1635.8 RH = 597.45 MEL = 418.30 sc_EDY = 3.6318e+05 mc_EDY = 7.7850e+05 lc_EDY = 1.0042e+06 rh_EDY = 4.1212e+05 MEDY = 3.1541e+05 Tcp = 2939.5 x = 0.4402 y = 0.4033 z = 0.1565 x10 = 0.4492 y10 = 0.3907 z10 = 0.1601 u = 0.2530 v = 0.3477 v_ = 0.5216 L = 69.703 a = 17.433 b = 42.993 C = 46.393 h = 67.928 Ra = 51.375 Rf = 56.838 duv = -7.4044e-04
Evaluate several spectral power distributions with resulting |Y| = 1000:
lam = 380:780;
spec = ciespec(lam,{'FL2','A','D65'},1000);
data = speceval(lam,spec)
lam = 380:780;
spec = ciespec(lam,{'FL2','A','D65'},1000);
data = speceval(lam,spec)
lam = 380:780; spec = ciespec(lam,{'FL2','A','D65'},1000); data = speceval(lam,spec)
See also: ciespec
Result:
data =
scalar structure containing the fields:
X =
991.46 1098.41 950.42
Y =
1000 1000 1000
Z =
673.15 355.87 1088.61
SC =
0.5083 0.2542 0.8173
MC =
1.2814 1.1743 1.4558
LC =
1.6160 1.6567 1.6289
RH =
0.9250 0.8308 1.4497
MEL =
0.7558 0.6575 1.3262
sc_EDY =
621.92 311.01 1000.00
mc_EDY =
880.17 806.60 1000.00
lc_EDY =
992.05 1017.06 1000.00
rh_EDY =
638.04 573.09 1000.00
MEDY =
569.90 495.81 1000.00
Tcp =
4225.1 2856.0 6501.8
x =
0.3721 0.4475 0.3127
y =
0.3753 0.4075 0.3291
z =
0.2526 0.1450 0.3582
x10 =
0.3793 0.4511 0.3138
y10 =
0.3673 0.4059 0.3310
z10 =
0.2534 0.1429 0.3552
u =
0.2202 0.2560 0.1978
v =
0.3331 0.3495 0.3122
v_ =
0.4997 0.5243 0.4684
L =
67.672 69.997 64.084
a =
5.1118e+00 1.8313e+01 -5.7970e-03
b =
2.1367e+01 4.6138e+01 9.2311e-03
C =
2.1970e+01 4.9639e+01 1.0900e-02
h =
76.545 68.351 122.128
Ra =
64.250 100.000 100.000
Rf =
70.208 99.996 99.997
duv =
1.8626e-03 7.1936e-06 3.2145e-03
data =
scalar structure containing the fields:
X =
991.46 1098.41 950.42
Y =
1000 1000 1000
Z =
673.15 355.87 1088.61
SC =
0.5083 0.2542 0.8173
MC =
1.2814 1.1743 1.4558
LC =
1.6160 1.6567 1.6289
RH =
0.9250 0.8308 1.4497
MEL =
0.7558 0.6575 1.3262
sc_EDY =
621.92 311.01 1000.00
mc_EDY =
880.17 806.60 1000.00
lc_EDY =
992.05 1017.06 1000.00
rh_EDY =
638.04 573.09 1000.00
MEDY =
569.90 495.81 1000.00
Tcp =
4225.1 2856.0 6501.8
x =
0.3721 0.4475 0.3127
y =
0.3753 0.4075 0.3291
z =
0.2526 0.1450 0.3582
x10 =
0.3793 0.4511 0.3138
y10 =
0.3673 0.4059 0.3310
z10 =
0.2534 0.1429 0.3552
u =
0.2202 0.2560 0.1978
v =
0.3331 0.3495 0.3122
v_ =
0.4997 0.5243 0.4684
L =
67.672 69.997 64.084
a =
5.1118e+00 1.8313e+01 -5.7970e-03
b =
2.1367e+01 4.6138e+01 9.2311e-03
C =
2.1970e+01 4.9639e+01 1.0900e-02
h =
76.545 68.351 122.128
Ra =
64.250 100.000 100.000
Rf =
70.208 99.996 99.997
duv =
1.8626e-03 7.1936e-06 3.2145e-03
data = scalar structure containing the fields: X = 991.46 1098.41 950.42 Y = 1000 1000 1000 Z = 673.15 355.87 1088.61 SC = 0.5083 0.2542 0.8173 MC = 1.2814 1.1743 1.4558 LC = 1.6160 1.6567 1.6289 RH = 0.9250 0.8308 1.4497 MEL = 0.7558 0.6575 1.3262 sc_EDY = 621.92 311.01 1000.00 mc_EDY = 880.17 806.60 1000.00 lc_EDY = 992.05 1017.06 1000.00 rh_EDY = 638.04 573.09 1000.00 MEDY = 569.90 495.81 1000.00 Tcp = 4225.1 2856.0 6501.8 x = 0.3721 0.4475 0.3127 y = 0.3753 0.4075 0.3291 z = 0.2526 0.1450 0.3582 x10 = 0.3793 0.4511 0.3138 y10 = 0.3673 0.4059 0.3310 z10 = 0.2534 0.1429 0.3552 u = 0.2202 0.2560 0.1978 v = 0.3331 0.3495 0.3122 v_ = 0.4997 0.5243 0.4684 L = 67.672 69.997 64.084 a = 5.1118e+00 1.8313e+01 -5.7970e-03 b = 2.1367e+01 4.6138e+01 9.2311e-03 C = 2.1970e+01 4.9639e+01 1.0900e-02 h = 76.545 68.351 122.128 Ra = 64.250 100.000 100.000 Rf = 70.208 99.996 99.997 duv = 1.8626e-03 7.1936e-06 3.2145e-03
References
Colorimetry - Part 1: CIE standard colorimetric observers. Commission International de l’Éclairage (CIE), Vienna Austria, 2019.
CIE System for Metrology of Optical Radiation for ipRGC-Influenced Responses to Light. Commission International de l’Éclairage (CIE), Vienna Austria, 2018, (DOI: 10.25039/S026.2018).
Colorimetry, 4th Edition. Commission International de l’Éclairage (CIE), Vienna Austria, 2018, ISBN: 978-3-902842-13-8 , (DOI: 10.25039/TR.015.2018).
Projective Transformations of I. C. I. Color Specifications. In: Journal of the Optical Society of America, vol. 27, no. 8, pp. 294-299, 1937, (DOI: 10.1364/JOSA.27.000294).
Method of measuring and specifying colour rendering properties of light sources. Commission Internationale de l'Éclairage (CIE), Vienna Austria, 1995, ISBN: 978 3 900734 57 2.
CIE 2017 Colour Fidelity Index for accurate scientific use. Commission International de l’Éclairage (CIE), Vienna Austria, 2017, ISBN: 978-3-902842-61-9.