ciexyY2XYZ
The ciexyY2XYZ function determines the CIE cone-fundamental-tristimulus values X,Y,Z from CIE 1931 x and y chromaticity coordinates and the corresponding photometric unit Y. Any errors in the data set or in results generated with the Lighting Toolbox are not in the liability of the CIE nor me, see license.
Usage:
[XYZ,X,Y,Z] = ciexyY2XYZ(x,y,Y)
Where:
| Parameter | Description |
XYZ X,Y,Z | Are the CIE 1931 cone-fundamental-tristimulus values X,Y,Z. |
x and y | Are the CIE 1931 normalized cone-fundamental trisitmulus values x and y. |
Y | Is the photometric unit, e.g. illuminance E or luminance L. |
Examples
Derive cone-fundamental tristimulus values X,Y,Z from CIE 1931 x and y coordinates and corresponding luminance L:
x = 0.2165; y = 0.4358; L = 100; XYZ = ciexyY2XYZ(x,y,L)
Result:
XYZ =
49.679 100.000 79.784
Derive cone-fundamental tristimulus values X,Y,Z from CIE 1931 x and y coordinates and several corresponding luminances L:
x = 0.2165; y = 0.4358; L = [100:100:1000]'; XYZ = ciexyY2XYZ(x,y,L)
Result:
XYZ =
49.679 100.000 79.784
99.358 200.000 159.569
149.036 300.000 239.353
198.715 400.000 319.137
248.394 500.000 398.922
298.073 600.000 478.706
347.751 700.000 558.490
397.430 800.000 638.274
447.109 900.000 718.059
496.788 1000.000 797.843
Derive cone-fundamental tristimulus values X,Y,Z from several CIE 1931 x and y coordinates and corresponding illuminances E:
x = linspace(0.2,0.3,10)'; y = linspace(0.3,0.4,10)'; E = [100:100:1000]'; XYZ = ciexyY2XYZ(x,y,E)
Result:
XYZ =
66.667 100.000 166.667
135.714 200.000 307.143
206.897 300.000 424.138
280.000 400.000 520.000
354.839 500.000 596.774
431.250 600.000 656.250
509.091 700.000 700.000
588.235 800.000 729.412
668.571 900.000 745.714
750.000 1000.000 750.000
Derive cone-fundamental tristimulus values X and Z from several CIE 1931 x and y coordinates and corresponding illuminances E:
x = linspace(0.2,0.3,10)'; y = linspace(0.3,0.4,10)'; E = [100:100:1000]'; [~,X,~,Z] = ciexyY2XYZ(x,y,E)
Result:
X =
66.667
135.714
206.897
280.000
354.839
431.250
509.091
588.235
668.571
750.000
Z =
166.67
307.14
424.14
520.00
596.77
656.25
700.00
729.41
745.71
750.00
Reference
Bruce Lindbloom, xyY to XYZ, http://www.brucelindbloom.com/Eqn_xyY_to_XYZ.html