frudawski

egrid

The egrid function creates a two-dimensional coordinate grid for illuminance measurements, depending on the size of the measurement area, see standard EN 12464-1. The procedure was proposed 1992 by Axel Stockmar.

Usage:

[x,y,nx,ny] = egrid(d,b,border,mode,[nx ny])

Where:

ParameterDescription
x and yContain the calculated grid coordinates.
nx and nyAre the resulting number of points in x and y dimension. These can be defined as input as well, to force a certain grid resolution.
d and bDefine the dimension of the area A = d\times b.
border
(optional)
Defines a peripheral border zone which is not considered in the grid.
mode
(optional)
‘std’ for default behavior resulting in an rounded odd or even number of points in each dimension, according to the current EN 12464 standard.
‘up’ for an rounded up number of points in each dimension, according to the previous EN 12464 standard.
‘odd’ to force an rounded up odd number of points in each dimension, as in the german standard DIN 5035-6. This has the advantage, that one can skip every second point for faster measurements while still having a fully functional grid.

Examples

Illuminance measurement grid for an area of A = 5~\textrm{m} \times 4~\textrm{m}:

[x,y] = egrid(5,4)
plot(x(:),y(:),'k+')
grid minor

Result:

x =

   0.3080   0.9343   1.5606   2.1869   2.8131   3.4394   4.0657   4.6920
   0.3080   0.9343   1.5606   2.1869   2.8131   3.4394   4.0657   4.6920
   0.3080   0.9343   1.5606   2.1869   2.8131   3.4394   4.0657   4.6920
   0.3080   0.9343   1.5606   2.1869   2.8131   3.4394   4.0657   4.6920
   0.3080   0.9343   1.5606   2.1869   2.8131   3.4394   4.0657   4.6920
   0.3080   0.9343   1.5606   2.1869   2.8131   3.4394   4.0657   4.6920

y =

   0.3080   0.3080   0.3080   0.3080   0.3080   0.3080   0.3080   0.3080
   0.9848   0.9848   0.9848   0.9848   0.9848   0.9848   0.9848   0.9848
   1.6616   1.6616   1.6616   1.6616   1.6616   1.6616   1.6616   1.6616
   2.3384   2.3384   2.3384   2.3384   2.3384   2.3384   2.3384   2.3384
   3.0152   3.0152   3.0152   3.0152   3.0152   3.0152   3.0152   3.0152
   3.6920   3.6920   3.6920   3.6920   3.6920   3.6920   3.6920   3.6920

Illuminance measurement grid for an area of A = 5~\textrm{m} \times 2~\textrm{m} and resulting number of points in x and y dimension:

[x,y,nx,ny] = egrid(5,2)

Result:

x =

 Columns 1 through 8:

   0.1623   0.4963   0.8302   1.1642   1.4981   1.8321   2.1660   2.5000
   0.1623   0.4963   0.8302   1.1642   1.4981   1.8321   2.1660   2.5000
   0.1623   0.4963   0.8302   1.1642   1.4981   1.8321   2.1660   2.5000
   0.1623   0.4963   0.8302   1.1642   1.4981   1.8321   2.1660   2.5000
   0.1623   0.4963   0.8302   1.1642   1.4981   1.8321   2.1660   2.5000
   0.1623   0.4963   0.8302   1.1642   1.4981   1.8321   2.1660   2.5000

 Columns 9 through 15:

   2.8340   3.1679   3.5019   3.8358   4.1698   4.5037   4.8377
   2.8340   3.1679   3.5019   3.8358   4.1698   4.5037   4.8377
   2.8340   3.1679   3.5019   3.8358   4.1698   4.5037   4.8377
   2.8340   3.1679   3.5019   3.8358   4.1698   4.5037   4.8377
   2.8340   3.1679   3.5019   3.8358   4.1698   4.5037   4.8377
   2.8340   3.1679   3.5019   3.8358   4.1698   4.5037   4.8377

y =

 Columns 1 through 8:

   0.1623   0.1623   0.1623   0.1623   0.1623   0.1623   0.1623   0.1623
   0.4974   0.4974   0.4974   0.4974   0.4974   0.4974   0.4974   0.4974
   0.8325   0.8325   0.8325   0.8325   0.8325   0.8325   0.8325   0.8325
   1.1675   1.1675   1.1675   1.1675   1.1675   1.1675   1.1675   1.1675
   1.5026   1.5026   1.5026   1.5026   1.5026   1.5026   1.5026   1.5026
   1.8377   1.8377   1.8377   1.8377   1.8377   1.8377   1.8377   1.8377

 Columns 9 through 15:

   0.1623   0.1623   0.1623   0.1623   0.1623   0.1623   0.1623
   0.4974   0.4974   0.4974   0.4974   0.4974   0.4974   0.4974
   0.8325   0.8325   0.8325   0.8325   0.8325   0.8325   0.8325
   1.1675   1.1675   1.1675   1.1675   1.1675   1.1675   1.1675
   1.5026   1.5026   1.5026   1.5026   1.5026   1.5026   1.5026
   1.8377   1.8377   1.8377   1.8377   1.8377   1.8377   1.8377

nx = 15
ny = 6

Number of measurement points in x and y dimension for a grid area of A = 50~\textrm{m} \times 25~\textrm{m}:

[~,~,nx,ny] = egrid(50,25)

Result:

nx = 26
ny = 13

Illuminance measurement grid for an area of A = 5~\textrm{m} \times 4~\textrm{m} and a peripheral border of 0.5 m:

[x,y] = egrid(5,4,0.5)

Result:

x =

   0.7500   1.2500   1.7500   2.2500   2.7500   3.2500   3.7500   4.2500
   0.7500   1.2500   1.7500   2.2500   2.7500   3.2500   3.7500   4.2500
   0.7500   1.2500   1.7500   2.2500   2.7500   3.2500   3.7500   4.2500
   0.7500   1.2500   1.7500   2.2500   2.7500   3.2500   3.7500   4.2500
   0.7500   1.2500   1.7500   2.2500   2.7500   3.2500   3.7500   4.2500
   0.7500   1.2500   1.7500   2.2500   2.7500   3.2500   3.7500   4.2500

y =

   0.7500   0.7500   0.7500   0.7500   0.7500   0.7500   0.7500   0.7500
   1.2500   1.2500   1.2500   1.2500   1.2500   1.2500   1.2500   1.2500
   1.7500   1.7500   1.7500   1.7500   1.7500   1.7500   1.7500   1.7500
   2.2500   2.2500   2.2500   2.2500   2.2500   2.2500   2.2500   2.2500
   2.7500   2.7500   2.7500   2.7500   2.7500   2.7500   2.7500   2.7500
   3.2500   3.2500   3.2500   3.2500   3.2500   3.2500   3.2500   3.2500

Illuminance measurement grid for an area of A = 5~\textrm{m} \times 2~\textrm{m} with an odd number of points in x and y dimension:

[x,y,nx,ny] = egrid(5,2,0,'odd')

Result:

x =

 Columns 1 through 8:

   0.1623   0.4963   0.8302   1.1642   1.4981   1.8321   2.1660   2.5000
   0.1623   0.4963   0.8302   1.1642   1.4981   1.8321   2.1660   2.5000
   0.1623   0.4963   0.8302   1.1642   1.4981   1.8321   2.1660   2.5000
   0.1623   0.4963   0.8302   1.1642   1.4981   1.8321   2.1660   2.5000
   0.1623   0.4963   0.8302   1.1642   1.4981   1.8321   2.1660   2.5000
   0.1623   0.4963   0.8302   1.1642   1.4981   1.8321   2.1660   2.5000
   0.1623   0.4963   0.8302   1.1642   1.4981   1.8321   2.1660   2.5000

 Columns 9 through 15:

   2.8340   3.1679   3.5019   3.8358   4.1698   4.5037   4.8377
   2.8340   3.1679   3.5019   3.8358   4.1698   4.5037   4.8377
   2.8340   3.1679   3.5019   3.8358   4.1698   4.5037   4.8377
   2.8340   3.1679   3.5019   3.8358   4.1698   4.5037   4.8377
   2.8340   3.1679   3.5019   3.8358   4.1698   4.5037   4.8377
   2.8340   3.1679   3.5019   3.8358   4.1698   4.5037   4.8377
   2.8340   3.1679   3.5019   3.8358   4.1698   4.5037   4.8377

y =

 Columns 1 through 8:

   0.1429   0.1429   0.1429   0.1429   0.1429   0.1429   0.1429   0.1429
   0.4286   0.4286   0.4286   0.4286   0.4286   0.4286   0.4286   0.4286
   0.7143   0.7143   0.7143   0.7143   0.7143   0.7143   0.7143   0.7143
   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000
   1.2857   1.2857   1.2857   1.2857   1.2857   1.2857   1.2857   1.2857
   1.5714   1.5714   1.5714   1.5714   1.5714   1.5714   1.5714   1.5714
   1.8571   1.8571   1.8571   1.8571   1.8571   1.8571   1.8571   1.8571

 Columns 9 through 15:

   0.1429   0.1429   0.1429   0.1429   0.1429   0.1429   0.1429
   0.4286   0.4286   0.4286   0.4286   0.4286   0.4286   0.4286
   0.7143   0.7143   0.7143   0.7143   0.7143   0.7143   0.7143
   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000
   1.2857   1.2857   1.2857   1.2857   1.2857   1.2857   1.2857
   1.5714   1.5714   1.5714   1.5714   1.5714   1.5714   1.5714
   1.8571   1.8571   1.8571   1.8571   1.8571   1.8571   1.8571

nx = 15
ny = 7

Illuminance measurement grid for an area of A = 5~\textrm{m} \times 2~\textrm{m} with a given number of points in x and y dimension:

[x,y,nx,ny] = egrid(5,2,0,'std',[5 3])

Result:

x =

   0.5000   1.5000   2.5000   3.5000   4.5000
   0.5000   1.5000   2.5000   3.5000   4.5000
   0.5000   1.5000   2.5000   3.5000   4.5000

y =

   0.3333   0.3333   0.3333   0.3333   0.3333
   1.0000   1.0000   1.0000   1.0000   1.0000
   1.6667   1.6667   1.6667   1.6667   1.6667

nx = 5
ny = 3

References:

Axel Werner Richard Stockmar: Basic concepts of computer aided Iighting design - or how accurate are computer predicted photometrie values. In: CIE X005-1992: Proceedings of the CIE Seminar on Computer Programs for Light and Lighting, Commission Internationale de l'Eclairage (CIE), Vienna Austria, 1992, ISBN: 978 3 900734 41 1.

Leave a comment

* I accept the use of cookies as well as the terms in the privacy policy. I accept that data provided by me is processed and saved. I know and accept that comments may be saved and published after review.